Game Physics

Game and Media Technology Master Program - Utrecht University

Dr. Nicolas Pronost

Collision resolution

Problem

- We assume that we know a collision occurs (e.g. early termination of GJK algorithm)
- We want to solve it, *i.e.* move back the colliding objects apart from each other
- But in which direction and with what intensity?

Collision resolution

- To resolve the collision it is necessary to have
 - The time of collision, which is the first instant the collision is detected
 - The contact point, which is the point where the colliding objects first touch
 - A contact normal, which is a normal to the plane passing through the contact point and oriented in the direction separating the two objects

Time of collision

- Computing the exact time (somewhere between t and $t + \Delta t$) of collision is not always feasible
- We can approximate it by bisection
- By repeatedly bisecting the time interval and performing an intersection test, we can find an arbitrary short interval [t₀, t₁] for which:
 - The objects do not collide at t_0
 - The objects collide at t_1
- Computationally expensive, so usually in games the frame rate Δt is small enough to not having to do bisection

Contact point and normal

- If you use the GJK algorithm in the narrow phase of the collision detection, the final simplex can be used to determine the contact points
 - The vector from the origin to its closest point on the surface is the penetration vector
 - Expanding-polytope algorithm (EPA) is used to calculate that point and vector

Expanding-polytope algorithm

- Starting from the GJK termination simplex (which contains the origin), we 'inflate' the polygon by splitting edges
 - At each iteration k, we compute the point v_k on the affine hull of the edge the closest to the origin
 - Then that closest edge is cut into two edges by adding the support point w_k to the polytope
 - We repeat that until the distance between v_k and w_k is small enough (< ε)

Expanding-polytope algorithm

Universiteit Utrecht

Contact point and normal

• It does not take the motion of the objects into account

Contact point and normal

- To estimate the direction of the collision we can use the position of the objects at the frame before the collision
 - Assume that the closest points at $t - \Delta t$ (GJK) are the points with largest depth penetration at t
 - Needs to store previous positions, but usually done for numerical integration anyway

Collision resolution

- We now have a mean to estimate time of collision, contact points and contact normal
- We still have to correct the position and orientation of the colliding objects

- Let denote the two objects A and B, with respective mass m_A and m_B and velocity v_A and v_B, the unit collision normal n and the contact point P
- We can solve the collision by using an impulsebased technique
 - at collision time we apply an impulse on each object at P in the direction n (-n for one of the object)
 - the impulse 'pushes' the two objects apart
 - as the two objects have different masses and incoming velocities, they are not pushed away with the same magnitude
 - we denote the scaling factor of that magnitude *j*

- The scaled magnitude of impulse is then added to the current velocity of each object
 - $-v_{-}$ is the velocity at collision time and v_{+} is the velocity after collision resolution

Types of collision

- Inelastic collisions
 - where energy is not preserved in the collision
 - e.g. objects stop in place
 - are easy to implement
 - *e.g.* backing out or stopping process
- Elastic collisions
 - where energy is fully preserved in the collision
 - e.g. billiard balls
 - are more difficult to calculate
 - *e.g.* magnitude of resulting velocities

Coefficient of restitution

- To model the elasticity of a collision we define the coefficient of restitution C_R of the collision
- It describes the ratio of speeds after and before collision along the collision normal

$$C_{R} = -\frac{(v_{A+} - v_{B+}) \cdot n}{(v_{A-} - v_{B-}) \cdot n}$$

 In practice we define a coefficient for each object with respect to collisions with a perfectly rigid and elastic object

- if $C_R = 1$, we have an elastic collision (E_k is conserved)

- if $C_R < 1$, we have an inelastic collision (lost of velocity)
- if $C_R = 0$, the objects will stick together after collision

Game Physics

Reminder

• An impulse is the rate of change of the momentum, *i.e.* a force delivered in an instant

$$F\Delta t = \Delta p = m(v(t + \Delta t) - v(t))$$

$$\tau\Delta t = \Delta L = I(\omega(t + \Delta t) - \omega(t))$$

- The momentum of a system is always conserved $m_A v_A(t + \Delta t) + m_B v_B(t + \Delta t) = m_A v_A(t) + m_B v_B(t)$
- The energy of a system is always conserved $E_{Kt}(t + \Delta t) + E_P(t + \Delta t) + E_{Kr}(t + \Delta t)$ $= E_{Kt}(t) + E_P(t) + E_{Kr}(t) + E_O$

• The total momentum of the system before and after collision is conserved, so

$$m_A v_{A-} + j_A * n = m_A v_{A+}$$
$$m_B v_{B-} - j_B * n = m_B v_{B+}$$

• Which can be written

$$v_{A+} = v_{A-} + \frac{j_A}{m_A}n$$
$$v_{B+} = v_{B-} - \frac{j_B}{m_B}n$$

• We also know that the velocities before and after collision relate with the coefficient of restitution

$$C_{R} = -\frac{(v_{A+} - v_{B+}) \cdot n}{(v_{A-} - v_{B-}) \cdot n}$$

So we have

$$j_{A} = \frac{-(1 + C_{R_{A}})(v_{A-} - v_{B-}) \cdot n}{\left(\frac{1}{m_{A}} + \frac{1}{m_{B}}\right)}$$

$$j_B = \frac{-(1 + C_{R_B})(v_{A-} - v_{B-}) \cdot n}{\left(\frac{1}{m_A} + \frac{1}{m_B}\right)}$$

Game Physics

• We can finally calculate the outgoing velocities

$$v_{A+} = v_{A-} + \frac{j_A}{m_A}n$$
$$v_{B+} = v_{B-} - \frac{j_B}{m_B}n$$

- the larger the mass of an object, the more resistant it is to velocity change
- but (from *j*) less resistant when the relative velocities of the objects increase or when the combined masses increase

 Of course a collision where the normal is off the center of rotation of the objects produce also a rotation of the two objects

- The way to handle rotational collision is very similar to how we handled linear collision
- The impulse factor *j* needs to be adapted
- If one or both objects are rotating, linear velocity from the rotation is added to the velocity

$$\bar{v}_A = v_A + \omega_A \times r_A$$
$$\bar{v}_B = v_B + \omega_B \times r_B$$

where ω are the angular velocities and r the displacement from the center of rotation to the points of contact

We thus have the following updated coefficient of restitution

$$C_R = -\frac{(\overline{\nu}_{A+} - \overline{\nu}_{B+}) \cdot n}{(\overline{\nu}_{A-} - \overline{\nu}_{B-}) \cdot n}$$

• This coefficient is used for further calculation of the linear velocity through the updated j_A and j_B

 The angular momentum before and after collision is also conserved

$$I_A \omega_{A-} + r_A \times (j * n) = I_A \omega_{A+}$$
$$I_B \omega_{B-} - r_B \times (j * n) = I_B \omega_{B+}$$

• Which can be written

$$\omega_{A+} = \omega_{A-} + I_A^{-1}(r_A \times (j * n))$$

$$\omega_{B+} = \omega_{B-} - I_B^{-1}(r_B \times (j * n))$$

As we did with linear velocity we can now calculate the updated factor j

$$j = \frac{-(1+C_R)(v_{A-}-v_{B-})\cdot n}{\left(\frac{1}{m_A}+\frac{1}{m_B}\right)+\left[\left(I_A^{-1}(r_A\times n)\right)\times r_A+\left(I_B^{-1}(r_B\times n)\right)\times r_B\right]\cdot n}$$

with $j = j_A$ when $C_R = C_{R_A}$, and $j = j_B$ when $C_R = C_{R_B}$

• With this updated factor *j*, we calculate the outgoing angular velocities

$$\omega_{A+} = \omega_{A-} + I_A^{-1}(r_A \times (j_A * n))$$

$$\omega_{B+} = \omega_{B-} - I_B^{-1}(r_B \times (j_B * n))$$

• This factor is also used to calculate the outgoing linear velocities (same as linear resolution)

$$v_{A+} = v_{A-} + \frac{J_A}{m_A}n$$
$$v_{B+} = v_{B-} - \frac{j_B}{m_B}n$$

Collision resolution

- The final algorithm can be summarized as follows
 - Run collision detection to find contact point and contact normal
 - Calculate linear and angular velocities at that contact points
 - Use coefficients of restitution and conservation of momentum to determine the impulses to apply
 - Solve for velocities using the impulses

Resting contact

- Our resolution system as it is will work fine, correcting position and orientation of colliding objects
- But some special cases can be handled more efficiently
- One of these cases occurs when we have resting contacts between objects
 - for example a box sitting on the floor
 - the floor theoretically moves down, but its mass is very large, and its outgoing velocity is very small and therefore neglected

Resting contact

 In our current framework, a box sitting on the floor will 'oscillate' around the surface

Resting contact

- A resting contact occurs when the relative velocity of the two objects along the normal is null (for us it means smaller than an ε)
- One solution is to 'artificially' reduce the coefficient of restitution when we are in that case
 - typically linearly dependent on the relative velocity or directly set to zero
 - after resolution the two objects will have a null relative velocity, so the box will stick on the floor which itself does not move

- Remember that there is friction between two objects when they are in contact
 - static friction when they do not move relatively to each other
 - kinetic friction when they move relatively to each other
 - rolling friction is usually ignored in game physics
- When they are in contact, we can add the friction force in our previous equations using impulses

• The friction acts in the tangential plane of the collision normal and resists the movement

where the vectors are normalized

• The velocity equations become

$$v_{A+} = v_{A-} + \frac{j_A(n + \mu_k t)}{m_A}$$
$$v_{B+} = v_{B-} - \frac{j_B(n + \mu_k t)}{m_B}$$

$$\omega_{A+} = \omega_{A-} + I_A^{-1}(r_A \times (j * (n + \mu_k t)))$$
$$\omega_{B+} = \omega_{B-} - I_B^{-1}(r_B \times (j * (n + \mu_k t)))$$

- We assumed here that the friction was a kinetic friction
- If the relative velocity is small enough, static friction should be used instead and the friction impulses need to be adjusted
- The tangential direction is sometimes undetermined (collision normal and relative velocity parallel), then alternative techniques should be used

End of Collision resolution

Next Soft body physics