Game Physics

Game and Media Technology Master Program - Utrecht University

Dr. Nicolas Pronost

Collision resolution

Problem

- We assume that we know a collision occurs (e.g. early termination of GJK algorithm)
- We want to solve it, i.e. move back the colliding objects apart from each other
- But in which direction and with what intensity?

Collision resolution

- To resolve the collision it is necessary to have
- The time of collision, which is the first instant the collision is detected
- The contact point, which is the point where the colliding objects first touch
- A contact normal, which is a normal to the plane passing through the contact point and oriented in the direction separating the two objects

Time of collision

- Computing the exact time (somewhere between t and $t+\Delta t$) of collision is not always feasible
- We can approximate it by bisection
- By repeatedly bisecting the time interval and performing an intersection test, we can find an arbitrary short interval $\left[t_{0}, t_{1}\right]$ for which:
- The objects do not collide at t_{0}
- The objects collide at t_{1}
- Computationally expensive, so usually in games the frame rate Δt is small enough to not having to do bisection

Contact point and normal

- If you use the GJK algorithm in the narrow phase of the collision detection, the final simplex can be used to determine the contact points
- The vector from the origin to its closest point on the surface is the penetration vector
- Expanding-polytope algorithm (EPA) is used to calculate that point and vector

Expanding-polytope algorithm

- Starting from the GJK termination simplex (which contains the origin), we 'inflate' the polygon by splitting edges
- At each iteration k, we compute the point v_{k} on the affine hull of the edge the closest to the origin
- Then that closest edge is cut into two edges by adding the support point w_{k} to the polytope
- We repeat that until the distance between v_{k} and w_{k} is small enough $(<\varepsilon)$

Expanding-polytope algorithm

Contact point and normal

- It does not take the motion of the objects into account

Contact point and normal

- To estimate the direction of the collision we can use the position of the objects at the frame before the collision
- Assume that the closest points at $t-\Delta t$ (GJK) are the points with largest depth penetration at t
- Needs to store previous positions, but usually done for numerical integration anyway

Collision resolution

- We now have a mean to estimate time of collision, contact points and contact normal
- We still have to correct the position and orientation of the colliding objects

Linear velocity

- Let denote the two objects A and B, with respective mass m_{A} and m_{B} and velocity v_{A} and v_{B}, the unit collision normal n and the contact point P
- We can solve the collision by using an impulsebased technique
- at collision time we apply an impulse on each object at P in the direction $n(-n$ for one of the object)
- the impulse 'pushes' the two objects apart
- as the two objects have different masses and incoming velocities, they are not pushed away with the same magnitude
- we denote the scaling factor of that magnitude j

Linear velocity

- The scaled magnitude of impulse is then added to the current velocity of each object
$-v_{-}$is the velocity at collision time and v_{+}is the velocity after collision resolution

Types of collision

- Inelastic collisions
- where energy is not preserved in the collision
- e.g. objects stop in place
- are easy to implement
- e.g. backing out or stopping process
- Elastic collisions
- where energy is fully preserved in the collision
- e.g. billiard balls
- are more difficult to calculate
- e.g. magnitude of resulting velocities

Coefficient of restitution

- To model the elasticity of a collision we define the coefficient of restitution C_{R} of the collision
- It describes the ratio of speeds after and before collision along the collision normal

$$
C_{R}=-\frac{\left(v_{A+}-v_{B+}\right) \cdot n}{\left(v_{A-}-v_{B-}\right) \cdot n}
$$

- In practice we define a coefficient for each object with respect to collisions with a perfectly rigid and elastic object
- if $C_{R}=1$, we have an elastic collision (E_{k} is conserved)
- if $C_{R}<1$, we have an inelastic collision (lost of velocity) - if $C_{R}=0$, the objects will stick together after collision

Reminder

- An impulse is the rate of change of the momentum, i.e. a force delivered in an instant

$$
\begin{aligned}
F \Delta t & =\Delta p \\
\tau \Delta t & =\Delta L(v(t+\Delta t)-v(t)) \\
& =I(\omega(t+\Delta t)-\omega(t))
\end{aligned}
$$

- The momentum of a system is always conserved $m_{A} v_{A}(t+\Delta t)+m_{B} v_{B}(t+\Delta t)=m_{A} v_{A}(t)+m_{B} v_{B}(t)$
- The energy of a system is always conserved

$$
\begin{aligned}
E_{K t}(t & +\Delta t)+E_{P}(t+\Delta t)+E_{K r}(t+\Delta t) \\
& =E_{K t}(t)+E_{P}(t)+E_{K r}(t)+E_{O}
\end{aligned}
$$

Linear velocity

- The total momentum of the system before and after collision is conserved, so

$$
\begin{aligned}
m_{A} v_{A-}+j_{A} * n & =m_{A} v_{A+} \\
m_{B} v_{B-}-j_{B} * n & =m_{B} v_{B+}
\end{aligned}
$$

- Which can be written

$$
\begin{aligned}
& v_{A+}=v_{A-}+\frac{j_{A}}{m_{A}} n \\
& v_{B+}=v_{B-}-\frac{j_{B}}{m_{B}} n
\end{aligned}
$$

Linear velocity

- We also know that the velocities before and after collision relate with the coefficient of restitution

$$
C_{R}=-\frac{\left(v_{A+}-v_{B+}\right) \cdot n}{\left(v_{A-}-v_{B-}\right) \cdot n}
$$

- So we have

$$
\begin{aligned}
& j_{A}=\frac{-\left(1+C_{R_{A}}\right)\left(v_{A-}-v_{B-}\right) \cdot n}{\left(\frac{1}{m_{A}}+\frac{1}{m_{B}}\right)} \\
& j_{B}=\frac{-\left(1+C_{R_{B}}\right)\left(v_{A-}-v_{B-}\right) \cdot n}{\left(\frac{1}{m_{A}}+\frac{1}{m_{B}}\right)}
\end{aligned}
$$

Linear velocity

- We can finally calculate the outgoing velocities

$$
\begin{aligned}
& v_{A+}=v_{A-}+\frac{j_{A}}{m_{A}} n \\
& v_{B+}=v_{B-}-\frac{j_{B}}{m_{B}} n
\end{aligned}
$$

- the larger the mass of an object, the more resistant it is to velocity change
- but (from j) less resistant when the relative velocities of the objects increase or when the combined masses increase

Angular velocity

- Of course a collision where the normal is off the center of rotation of the objects produce also a rotation of the two objects

Angular velocity

- The way to handle rotational collision is very similar to how we handled linear collision
- The impulse factor j needs to be adapted
- If one or both objects are rotating, linear velocity from the rotation is added to the velocity

$$
\begin{aligned}
& \bar{v}_{A}=v_{A}+\omega_{A} \times r_{A} \\
& \bar{v}_{B}=v_{B}+\omega_{B} \times r_{B}
\end{aligned}
$$

where ω are the angular velocities and r the displacement from the center of rotation to the points of contact

Angular velocity

- We thus have the following updated coefficient of restitution

$$
C_{R}=-\frac{\left(\bar{v}_{A+}-\bar{v}_{B+}\right) \cdot n}{\left(\bar{v}_{A-}-\bar{v}_{B-}\right) \cdot n}
$$

- This coefficient is used for further calculation of the linear velocity through the updated j_{A} and j_{B}

Angular velocity

- The angular momentum before and after collision is also conserved

$$
\begin{aligned}
I_{A} \omega_{A-}+r_{A} \times(j * n) & =I_{A} \omega_{A+} \\
I_{B} \omega_{B-}-r_{B} \times(j * n) & =I_{B} \omega_{B+}
\end{aligned}
$$

- Which can be written

$$
\begin{aligned}
& \omega_{A+}=\omega_{A-}+I_{A}^{-1}\left(r_{A} \times(j * n)\right) \\
& \omega_{B+}=\omega_{B-}-I_{B}^{-1}\left(r_{B} \times(j * n)\right)
\end{aligned}
$$

Angular velocity

- As we did with linear velocity we can now calculate the updated factor j

$$
j=\frac{-\left(1+C_{R}\right)\left(v_{A-}-v_{B-}\right) \cdot n}{\left(\frac{1}{m_{A}}+\frac{1}{m_{B}}\right)+\left[\left(I_{A}^{-1}\left(r_{A} \times n\right)\right) \times r_{A}+\left(I_{B}^{-1}\left(r_{B} \times n\right)\right) \times r_{B}\right] \cdot n}
$$

with $j=j_{A}$ when $C_{R}=C_{R_{A}}$, and $j=j_{B}$ when $C_{R}=C_{R_{B}}$

Angular velocity

- With this updated factor j, we calculate the outgoing angular velocities

$$
\begin{aligned}
\omega_{A+} & =\omega_{A-}+I_{A}^{-1}\left(r_{A} \times\left(j_{A} * n\right)\right) \\
\omega_{B+} & =\omega_{B-}-I_{B}^{-1}\left(r_{B} \times\left(j_{B} * n\right)\right)
\end{aligned}
$$

- This factor is also used to calculate the outgoing linear velocities (same as linear resolution)

$$
\begin{aligned}
& v_{A+}=v_{A-}+\frac{j_{A}}{m_{A}} n \\
& v_{B+}=v_{B-}-\frac{j_{B}}{m_{B}} n
\end{aligned}
$$

Collision resolution

- The final algorithm can be summarized as follows
- Run collision detection to find contact point and contact normal
- Calculate linear and angular velocities at that contact points
- Use coefficients of restitution and conservation of momentum to determine the impulses to apply
- Solve for velocities using the impulses

Resting contact

- Our resolution system as it is will work fine, correcting position and orientation of colliding objects
- But some special cases can be handled more efficiently
- One of these cases occurs when we have resting contacts between objects
- for example a box sitting on the floor
- the floor theoretically moves down, but its mass is very large, and its outgoing velocity is very small and therefore neglected

Resting contact

- In our current framework, a box sitting on the floor will 'oscillate' around the surface

Resting contact

- A resting contact occurs when the relative velocity of the two objects along the normal is null (for us it means smaller than an ε)
- One solution is to 'artificially' reduce the coefficient of restitution when we are in that case
- typically linearly dependent on the relative velocity or directly set to zero
- after resolution the two objects will have a null relative velocity, so the box will stick on the floor which itself does not move

Friction

- Remember that there is friction between two objects when they are in contact
- static friction when they do not move relatively to each other
- kinetic friction when they move relatively to each other
- rolling friction is usually ignored in game physics
- When they are in contact, we can add the friction force in our previous equations using impulses

Friction

- The friction acts in the tangential plane of the collision normal and resists the movement

$$
t=\left(n \times\left(v_{A}-v_{B}\right)\right) \times n
$$

where the vectors are normalized

Friction

- The velocity equations become

$$
\begin{gathered}
v_{A+}=v_{A-}+\frac{j_{A}\left(n+\mu_{k} t\right)}{m_{A}} \\
v_{B+}=v_{B-}-\frac{j_{B}\left(n+\mu_{k} t\right)}{m_{B}} \\
\omega_{A+}=\omega_{A-}+I_{A}^{-1}\left(r_{A} \times\left(j *\left(n+\mu_{k} t\right)\right)\right) \\
\omega_{B+}=\omega_{B-}-I_{B}^{-1}\left(r_{B} \times\left(j *\left(n+\mu_{k} t\right)\right)\right)
\end{gathered}
$$

Friction

- We assumed here that the friction was a kinetic friction
- If the relative velocity is small enough, static friction should be used instead and the friction impulses need to be adjusted
- The tangential direction is sometimes undetermined (collision normal and relative velocity parallel), then alternative techniques should be used

End of
 Collision resolution

Next
Soft body physics

